Feature detection cells.
Brief doc
A feature descriptor match refiner, using PnP.
Parameters
inlier_thresh type: float not required default: 30.0
The thresh hold on number of inliers to consider pose found.
min_inliers type: unsigned int not required default: 100
minimum number of inliers
n_iters type: unsigned int not required default: 100
number of ransac iterations
reprojection_error type: float not required default: 8.0
error threshold
Inputs
K type: cv::Mat
Camera model.
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The descriptor matches.
test type: cv::Mat
The 3d test points.
train type: cv::Mat
The 3d training points.
Outputs
R type: cv::Mat
T type: cv::Mat
found type: bool
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The verified matches.
matches_mask type: cv::Mat
The matches mask, same size as the original matches.
Brief doc
A feature descriptor match refiner, using Homography and svd estimation.
Parameters
inlier_thresh type: float not required default: 25.0
The inlier threshold of pose found.
min_inliers type: unsigned int not required default: 100
minimum number of inliers
n_iters type: unsigned int not required default: 200
number of ransac iterations
reprojection_error type: float not required default: 43.5
error threshold
Inputs
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The descriptor matches.
test_2d type: cv::Mat
The 2d test points.
test_3d type: cv::Mat
The 3d test points.
train_2d type: cv::Mat
The 2d training points.
train_3d type: cv::Mat
The 3d training points.
Outputs
R type: cv::Mat
T type: cv::Mat
found type: bool
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The verified matches.
matches_mask type: cv::Mat
The matches mask, same size as the original matches.
Brief doc
An ORB detector. Takes a image and a mask, and computes keypoints and descriptors(32 byte binary).
Parameters
edgeThreshold type: float not required no default value
nOctaveLayers type: int not required default: 3
threshold type: float not required no default value
Inputs
image type: cv::Mat
An input image.
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
mask type: cv::Mat
An mask, same size as image.
points type: cv::Mat
2d points.
Outputs
descriptors type: cv::Mat
The descriptors per keypoints
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
Brief doc
A feature descriptor match refiner, using an affine 3d to 3d estimator.
Inputs
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The descriptor matches.
test type: cv::Mat
The 3d test points.
train type: cv::Mat
The 3d training points.
Outputs
R type: cv::Mat
T type: cv::Mat
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The verified matches.
matches_mask type: cv::Mat
The matches mask, same size as the original matches.
Brief doc
Given descriptors, find matches.
Parameters
key_size type: unsigned int not required default: 8
multi_probe_level type: unsigned int not required default: 1
n_tables type: unsigned int not required default: 4
radius type: unsigned int not required default: 55
Inputs
test type: cv::Mat
Train descriptors.
train type: cv::Mat
Test descriptors.
update type: bool
If set to true, update the descriptors.
Outputs
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The descriptor matches.
Brief doc
An ORB feature detector.
Parameters
first_level type: int not required default: 0
The first level of the scales
n_features type: int not required default: 1000
The number of desired features
n_levels type: int not required default: 3
The number of scales
scale_factor type: float not required default: 1.20000004768
The factor between scales
Outputs
image type: cv::Mat
An input image.
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
mask type: cv::Mat
An mask, same size as image.
Brief doc
A feature descriptor matcher.
Inputs
test type: cv::Mat
Train descriptors.
train type: cv::Mat
Test descriptors.
Outputs
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The descriptor matches.
Brief doc
Draws matches.
Inputs
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The descriptor matches.
matches_mask type: cv::Mat
The descriptor matches mask.
test type: cv::Mat
Test keypoints.
test_image type: cv::Mat
Test image.
train type: cv::Mat
Train keypoints
train_image type: cv::Mat
Test image.
Outputs
output type: cv::Mat
An output image.
Brief doc
A SIFT feature detector.
Parameters
edgeThreshold type: float not required no default value
nOctaveLayers type: int not required default: 3
threshold type: float not required no default value
Outputs
descriptors type: cv::Mat
The descriptors per keypoints
image type: cv::Mat
An input image.
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
mask type: cv::Mat
An mask, same size as image.
points type: cv::Mat
2d points.
Brief doc
Prints stats on ORB descriptors.
Inputs
descriptors type: cv::Mat
The input descriptors.
Outputs
distances type: cv::Mat
A histogram of the distances in this set.
Brief doc
Parameters
json_descriptor_params type: boost::python::api::object not required default: {"type": "ORB", "module": "ecto_opencv.features2d"}
Parameters for the descriptor as a JSON string. It should have the format: “{“type”:”ORB/SIFT whatever”, “module”:”where_it_is”, “param_1”:val1, ....}
json_feature_params type: boost::python::api::object not required default: {"type": "ORB", "module": "ecto_opencv.features2d"}
Parameters for the feature as a JSON string. It should have the format: “{“type”:”ORB/SIFT whatever”, “module”:”where_it_is”, “param_1”:val1, ....}
Inputs
image type: cv::Mat
An input image.
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
mask type: cv::Mat
An mask, same size as image.
points type: cv::Mat
2d points.
Outputs
descriptors type: cv::Mat
The descriptors per keypoints
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
Brief doc
Draws keypoints.
Inputs
image type: cv::Mat
The input image, used as the base to draw on.
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints to draw.
Outputs
image type: cv::Mat
The output image.
Brief doc
A SIFT feature detector.
Parameters
edgeThreshold type: float not required no default value
nOctaveLayers type: int not required default: 3
threshold type: float not required no default value
Outputs
image type: cv::Mat
An input image.
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
mask type: cv::Mat
An mask, same size as image.
Brief doc
An ORB descriptor extractor.
Outputs
descriptors type: cv::Mat
The descriptors per keypoints
image type: cv::Mat
An input image.
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
mask type: cv::Mat
An mask, same size as image.
points type: cv::Mat
2d points.
Brief doc
A FAST feature detector.
Parameters
nonmax type: bool not required default: True
Use the FAST nonmax suppression.
thresh type: int not required default: 20
The FAST threshold. 20 is a decent value.
Outputs
image type: cv::Mat
An input image.
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
mask type: cv::Mat
An mask, same size as image.
Brief doc
Take key points and return an array of the x,y coordinates.
Inputs
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints
Outputs
points type: cv::Mat
The array of x,y coordinates
Brief doc
A feature descriptor match refiner, using a Homography estimator
Parameters
match_distance type: double not required default: 120.0
The match distance threshhold.
Inputs
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The descriptor matches.
test type: cv::Mat
The test points.
train type: cv::Mat
The training points.
Outputs
H type: cv::Mat
The estimated homography.
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The verified matches.
matches_mask type: cv::Mat
The matches mask, same size as the original matches.
Brief doc
Accumulates descriptors.
Inputs
descriptors type: cv::Mat
The input descriptors.
Outputs
descriptors type: cv::Mat
A cumulative view of all descriptors.
Brief doc
An ORB detector. Takes a image and a mask, and computes keypoints and descriptors(32 byte binary).
Parameters
n_features type: int not required default: 1000
The number of desired features
n_levels type: int not required default: 3
The number of scales
scale_factor type: float not required default: 1.20000004768
The factor between scales
Inputs
image type: cv::Mat
An input image.
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
mask type: cv::Mat
An mask, same size as image.
points type: cv::Mat
2d points.
Outputs
descriptors type: cv::Mat
The descriptors per keypoints
keypoints type: std::vector<cv::KeyPoint, std::allocator<cv::KeyPoint> >
The keypoints.
Brief doc
Takes matches and turns them into a cv mat alias..
Inputs
matches type: std::vector<cv::DMatch, std::allocator<cv::DMatch> >
The matches
Outputs
matches type: cv::Mat
An nx3 matrix of matched indices with distances in the 3rd column